Kamis, 02 April 2020

METODE MONTE CARLO


Metode Monte Carlo adalah algoritme komputasi untuk mensimulasikan berbagai perilaku sistem fisika dan matematika. Penggunaan klasik metode ini adalah untuk mengevaluasi integral definit, terutama integral multidimensi dengan syarat dan batasan yang rumit. Metode Monte Carlo sangat penting dalam fisika komputasi dan bidang terapan lainnya, dan memiliki aplikasi yang beragam mulai dari perhitungan kromodinamika kuantum esoterik hingga perancangan aerodinamika. Metode ini terbukti efisien dalam memecahkan persamaan diferensial integral medan radians, sehingga metode ini digunakan dalam perhitungan iluminasi global yang menghasilkan gambar-gambar fotorealistik model tiga dimensi, dimana diterapkan dalam video games, arsitektur, perancangan, film yang dihasilkan oleh komputer, efek-efek khusus dalam film, bisnis, ekonomi, dan bidang lainnya.

Simulasi monte carlo adalah sebuah simulasi untuk menentukan suatu angka random dari data sampel dengan berdistribusi tertentu. Tujuan simulasi Monte carlo adalah menemukan nilai yang mendekati nilai sesungguhnya, atau nilai yang akan terjadi berdasarkan distribusi dari data sampling. Oleh sebab kemampuannya mampu memprediksi suatu nilai, maka Monte Carlo dahulu sering digunakan untuk kepentingan judi di kasino.

Prosedur Monte Carlo
·         Tentukan angka sampling yang akan disimulasikan
·         Temukan distribusi dari data sampling yang ada
·         Simulasi berdasarkan distribusi di atas

Melakukan Simulasi Monte Carlo dengan Excel
Contoh, seorang aktuaris pada perusahaan asuransi ingin memprediksi tingkat kecelakaan di jalan tol ruas tertentu. Berdasarkan data statistik diketahui sebagai berikut:

Bulan Frekuensi Kecelakaan Bulan Frekuensi Kecelakaan Bulan Frekuensi Kecelakaan
1 9 9 12 17 21
2 8 10 12 18 22
3 43 11 14 19 23
4 12 12 15 20 21
5 16 13 24 21 12
6 32 14 26 22 24
7 13 15 27 23 25
8 4 16 25 24 11

Untuk melakukan simulasi terhadap data kecelakaan di atas perlu diketahui apa distribusi dari data di atas. Untuk mengetahuinya kita akan menggunakan add ins crystal ball di excel.
Berdasarkan hasil keluaran Excel di atas adalah sebagai berikut:

Distribution Chi-Square Chi-Square P-Value Parameters
Neg Binomial 2.9994 0.083 Probability=0.10643, Shape=2
Geometric 8.3675 0.015 Probability=0.05322
Discrete Uniform 9.5238 0.002 Minimum=2, Maximum=45
Poisson 14.9961 0.001 Rate=18.79167
Binomial 17.0778 0.000 Trials=177, Probability=0.10617

Berikut merupakan summary untuk distribusi Neg binomial:

Data Series: 1
Distribution: 19.
Best Fit: Neg Binomial
Chi-Square 1.7900
P-Value: 0.181

Berdasarkan hasil di atas maka distribusi yang paling fit untuk data di atas adalah distribusi Neg binomial. Selanjutnya distribusi ini yang akan kita jadikan acuan untuk melakukan simulasi dengan menggunakan Monte carlo.

Berikut merupakan langkah-langkah simulasinya:

monte carlo 2

Selanjutnya untuk melihat nilai trial-nya, kita dapat memilih option extract data sesuai kebutuhan.

monte carlo 3

Maka hasil Monte carlo akan diperoleh sebagai berikut:

Trial values Data Series 1: Best Fit
1 34.
2 10.
3 12.
4 21.
5 16.
6 29.
7 23.
8 24.
… …
1000 33.


Tabel di atas menggambarkan hasil untuk simulasi 1000 data. Berdasarkan data di atas maka aktuaris dapat menghitung probabilitas kecelakaan di ruas tol tertentu. Ketika probabilitas kecelakaan sudah diketahui maka tentunya seorang aktuaris dapat menghitung berapa klaim yang harus dibayarkan oleh perusahaan dan berapa premi yang harus dibayarkan oleh nasabah.




Sumber :
https://id.wikipedia.org/wiki/Metode_Monte_Carlo